Strong Surface Orientation Dependent Thermal Transport in Si Nanowires
نویسندگان
چکیده
Thermoelectrics, which convert waste heat to electricity, offer an attractive pathway for addressing an important niche in the globally growing landscape of energy demand. Research to date has focused on reducing the thermal conductivity relative to the bulk. Si nanowires (NWs) have received exceptional attention due to their low-dimensionality, abundance of availability, and high carrier mobility. From thermal transport point of view, the thermal conductivity of Si NWs strongly depends on the detailed surface structure, such as roughness and surface orientation. Here, direct molecular dynamics simulations and theoretical models are used to investigate the thermal transport in Si NWs with diverse surface orientations. Our results show that the thermal conductivity of Si NWs with different surface orientation can differ by as large as 2.7~4.2 times, which suggests a new route to boost the thermoelectric performance. Using the full spectrum theory, we find that the surface orientation, which alters the distribution of atoms on the surface and determines the degree of phonon coupling between the core and the surface, is the dominant mechanism. Furthermore, using spectral thermal conductivity, the remarkable difference in the thermal conductivity for different surface orientation is found to only stem from the phonons in the medium frequency range, with minor contribution from low and high frequency phonons.
منابع مشابه
Influence of Cross-Section Geometry and Wire Orientation on the Phonon Shifts in Ultra-Scaled Si Nanowires
Related Articles Assessment of phonon boundary scattering from light scattering standpoint J. Appl. Phys. 112, 063513 (2012) The influence of phonon scatterings on the thermal conductivity of SiGe nanowires Appl. Phys. Lett. 101, 043114 (2012) Size dependent surface dissipation in thick nanowires Appl. Phys. Lett. 100, 263112 (2012) A fundamental numerical and theoretical study for the vibratio...
متن کاملSuppression of phonon heat conduction in cross-section-modulated nanowires
We have theoretically demonstrated that phonon heat flux can be significantly suppressed in Si and Si/SiO2 nanowires with the periodically modulated cross-section area—referred to as the cross-section-modulated nanowires—in comparison with the generic uniform cross-section nanowires. The phonon energy spectra were obtained using the five-parameter Born–von Karman-type model and the face-centere...
متن کاملCalculation of Confined Phonon Spectrum in Narrow Silicon Nanowires Using the Valence Force Field Method
We study the effect of confinement on the phonon properties of ultra-narrow silicon nanowires of side sizes of 1 nm to 10 nm. We use the modified valence force field (MVFF) method to compute the phononic dispersion and extract the density of states, the transmission function, the sound velocity, the ballistic thermal conductance, and boundary-scattering-limited diffusive thermal conductivity. W...
متن کاملImpact of Phonon Surface Scattering on Thermal Energy Distribution of Si and SiGe Nanowires
Thermal transport in nanostructures has attracted considerable attention in the last decade but the precise effects of surfaces on heat conduction have remained unclear due to a limited accuracy in the treatment of phonon surface scattering phenomena. Here, we investigate the impact of phonon-surface scattering on the distribution of thermal energy across phonon wavelengths and mean free paths ...
متن کاملPreparation and Characterization of Tin Oxide Nanowires
The aim of this research is preparation of SnO2 nanowires by means of Thermal chemical reaction vapor transport deposition (TCRVTD) method from SnO powders. The morphology, chemical composition and microstructure properties of the nanowires are characterized using field emission scanning electron microscope (FE-SEM), EDS, and XRD. The XRD diffraction patterns reveal that the SnO2 nanowires have...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016